Answer:
a) 42 mm
b) 144.4 MPa
Explanation:
Load P = 200 kN = 200 x 10^3 N
Torque T = 1.5 kN-m = 1.5 x 10^3 N-m
maximum shear stress τ = 100 Mpa = 100 x 10^6 Pa
diameter of shaft d = ?
From T = τ * [tex]\frac{\pi }{16}[/tex] * [tex]d^{3}[/tex]
substituting values, we have
1.5 x 10^3 = 100 x 10^6 x [tex]\frac{3.142 }{16}[/tex] x [tex]d^{3}[/tex]
[tex]d^{3}[/tex] = 7.638 x 10^-5
d = [tex]\sqrt[3]{7.638 * 10^-5}[/tex] = 0.042 m = 42 mm
b) Normal stress = P/A
where A is the area
A = [tex]\frac{\pi d^{2} }{4}[/tex] = [tex]\frac{3.142*0.042^{2} }{4}[/tex] = 1.385 x 10^-3
Normal stress = (200 x 10^3)/(1.385 x 10^-3) = 144.4 x 10^6 Pa = 144.4 MPa