Answer:
[tex] Area = 538.5 m^2 [/tex]
Step-by-step Explanation:
Given:
∆XVW
m < X = 50°
m < W = 63°
XV = w = 37 m
Required:
Area of ∆XVW
Solution:
Find side length XW using Law of Sines
[tex] \frac{v}{sin(V)} = \frac{w}{sin(W)} [/tex]
W = 63°
w = XV = 37 m
V = 180 - (50+63) = 67°
v = XW = ?
[tex] \frac{v}{sin(67)} = \frac{37}{sin(63)} [/tex]
Cross multiply
[tex] v*sin(63) = 37*sin(67) [/tex]
Divide both sides by sin(63) to make v the subject of formula
[tex] \frac{v*sin(63)}{sin(63)} = \frac{37*sin(67)}{sin(63)} [/tex]
[tex] v = \frac{37*sin(67)}{sin(63)} [/tex]
[tex] v = 38 [/tex] (approximated to nearest whole number)
[tex] XW = v = 38 m [/tex]
Find the area of ∆XVW
[tex] area = \frac{1}{2}*v*w*sin(X) [/tex]
[tex] = \frac{1}{2}*38*37*sin(50) [/tex]
[tex] = \frac{38*37*sin(50)}{2} [/tex]
[tex] Area = 538.5 m^2 [/tex] (to nearest tenth).