Answer:
Partial pressure (Ar) = 316.1mmHg
Explanation:
In the mixture of Ar and H₂ you can find the total moles of both gases using general gas law and with the mass of the sample and molar weight of each gas find the mole fraction of Argon and thus, its partial pressure.
Moles of gases:
PV = nRT
P = 910.0mmHg ₓ (1atm / 760mmHg) = 1.1974atm
V = 1.66L
n = Moles gases
R = 0.082atmL/molK
T = 54.9°C + 273.15K = 328.05K
PV = nRT
1.1974atm*1.66L = n*0.082atmL/molK*328.05K
Knowing H₂ = 2.016g/mol and Ar = 39.948g/mol you can write:
1.13g = 2.016X + 39.948Y (1)
Where X = moles of hydrogen and Y = moles of Argon.
Also we can write:
0.0739moles = X + Y (2)
Total moles of the sample are moles of hydrogen + moles Argon
Replacing 2 in 1:
1.13g = 2.016(0.0739-Y) + 39.948Y
1.13 = 0.1564 - 2.016Y + 39.948Y
0.9736 = 37.932Y
0.02567 = Y = moles of Argon
As total moles are 0.0739moles, mole fraction of Ar in the sample are:
XAr = 0.02567mol / 0.0739mol
X Ar = 0.347
Last, partial pressure of Ar = X Ar * total pressure.
Partial pressure (Ar) = 0.347*910.0mmHg