15. A manufacturer of electronic calculators is interested in estimating the fraction of defective units produced. A random sample of 800 calculators contains 10 defectives. a. Formulate and test the hypothesis to determine if the fraction defective exceeds 0.01. Use 0.05 significance level. b. Calculate a 95% CI for this problem. Does the CI agreed with your result on (a) explain.

Respuesta :

Answer:

a

   The Null hypothesis is  [tex]H_o : p = 0.01[/tex]

   The defect did not exceed 0.01

b

   The  95%  confidence interval is   [tex]0.004801 < p < 0.020199[/tex]

   Yes the CI agrees with the result in a  because the value 0.01 fall within the CI

Step-by-step explanation:

From the question we are told that

     The sample size is  n = 800

      The number of defective calculators is  k =  10

       The population is  [tex]p = 0.01[/tex]

The Null hypothesis is  [tex]H_o : p = 0.01[/tex]

The Alternative hypothesis is  [tex]H_a : P> 0.01[/tex]

Generally the proportion of defective calculators is mathematically represented as

         [tex]\r p = \frac{k}{n}[/tex]

substituting values

          [tex]\r p = \frac{10}{800}[/tex]

          [tex]\r p = 0.0125[/tex]

Next is to obtain the critical value of  [tex]\alpha[/tex] from the z-table.The  value is  

          [tex]Z_{\alpha } = 1.645[/tex]

Now the test statistics is mathematically evaluated as

        [tex]t = \frac{\r p - p }{ \sqrt{ \frac{p (1- p )}{n} } }[/tex]

substituting values

          [tex]t = \frac{ 0.0125 - 0.01 }{ \sqrt{ \frac{0.01 (1- 0.01 )}{800} } }[/tex]

           [tex]t = 0.71067[/tex]

Now comparing the values of  t to the value of [tex]Z_{\alpha }[/tex] we see that [tex]t < Z_{\alpha }[/tex] hence we fail to reject the null hypothesis

Generally the margin of error is mathematically represented as  

       [tex]E = Z_{\frac{\alpha }{2} } * \sqrt{\frac{\r p (1-\r p )}{n} }[/tex]

where  [tex]Z_{\frac{\alpha }{2} }[/tex] is the critical value of  [tex]\frac{\alpha }{2}[/tex] which is obtained from the z-table.The  value is

              [tex]Z_{\frac{\alpha }{2} } = Z_{\frac{0.05 }{2} } = 1.96[/tex]

The reason we are obtaining critical value of    [tex]\frac{\alpha }{2}[/tex]  instead of    [tex]\alpha[/tex] is because    [tex]\alpha[/tex]

represents the area under the normal curve where the confidence level interval (   [tex]1- \alpha[/tex] ) did not cover which include both the left and right tail while  

 [tex]\frac{\alpha }{2}[/tex]  is just the area of one tail which what we required to calculate the margin of error .

NOTE: We can also obtain the value using critical value calculator (math dot armstrong dot edu)

So

      [tex]E = 1.96 * \sqrt{\frac{ 0.0125 (1-0.0125 )}{800} }[/tex]

     [tex]E = 0.007699[/tex]

The  95%  confidence interval is mathematically represented as

       [tex]\r p - E < p < \r p - E[/tex]

substituting values

      [tex]0.0125 - 0.007699 < p < 0.0125 + 0.007699[/tex]

      [tex]0.004801 < p < 0.020199[/tex]

Now given the p = 0.01 is within this interval then the CI  agrees with answer gotten in a

RELAXING NOICE
Relax