Respuesta :

Answer:

[tex]P_{10} =0.1[/tex]

Explanation:

Given

[tex]0.1, 0.1, 0.3, 0.3, 0.3, 0.4, 0.4, 0.4, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8[/tex]

Required

Determine [tex]P_{10}[/tex]

[tex]P_{10}[/tex] implies 10th percentile and this is calculated as thus

[tex]P_{10} = \frac{10(n+1)}{100}[/tex]

Where n is the number of data; n = 14

[tex]P_{10} = \frac{10(n+1)}{100}[/tex]

Substitute 14 for n

[tex]P_{10} = \frac{10(14+1)}{100}[/tex]

[tex]P_{10} = \frac{10(15)}{100}[/tex]

Open the bracket

[tex]P_{10} = \frac{10 * 15}{100}[/tex]

[tex]P_{10} = \frac{150}{100}[/tex]

[tex]P_{10} = 1.5th\ item[/tex]

This means that the 1.5th item is [tex]P_{10}[/tex]

And this falls between the 1st and 2nd item and is calculated as thus;

[tex]P_{10} = 1.5th\ item[/tex]

Express 1.5 as 1 + 0.5

[tex]P_{10} = (1 +0.5)\ th\ item[/tex]

[tex]P_{10} = 1^{st}\ item +0.5(2^{nd} - 1^{st}) item[/tex]

From the given data; [tex]1st\ item = 0.1[/tex] and [tex]2nd\ item = 0.1[/tex]

[tex]P_{10} = 1^{st}\ item +0.5(2^{nd} - 1^{st}) item[/tex] becomes

[tex]P_{10} =0.1 +0.5(0.1 - 0.1)[/tex]

[tex]P_{10} =0.1 +0.5(0)[/tex]

[tex]P_{10} =0.1 +0[/tex]

[tex]P_{10} =0.1[/tex]

RELAXING NOICE
Relax