Respuesta :
Answer:
-55.9kJ/mol is the change in enthalpy of the reaction
Explanation:
In the reaction:
HCl(aq) + NaOH(aq) → H₂O(l) + NaCl
Some heat is released per mole of reaction.
To know how many moles reacts we need to find limiting reactant:
Moles HCl = 0.050L ₓ (1.27mol / L) = 0.0635 moles HCl
Moles NaOH = 0.050L ₓ (1.32mol / L) = 0.066 moles NaOH
As there are more moles of NaOH than moles of HCl, HCl is limiting reactant and moles of reaction are moles of limiting reactant, 0.0635 moles
Using the coffee-cup calorimeter equation we can find how many heat was released thus:
Q = C×m×ΔT
Where Q is heat released, C is specific heat of the solution (4.18J/g°C), m is mass of solution (100g because there are 100mL of solution -50.0mL of HCl and 50.0mL of NaOH- and density is 1g/mL) and ΔT is change in temperature (8.49°C)
Replacing:
Q = 4.18J/g°C×100g×8.49°C
Q = 3548.8J of heat are released in the reaction
Now, change in enthalpy, ΔH, is equal to change in heat (As is released heat ΔH < 0) per mole of reaction, that is:
ΔH = Heat / mol of reaction
ΔH = -3548.8J / 0.0635 moles of reaction
Negative because is released heat.
ΔH = -55887J / mol
ΔH =
-55.9kJ/mol is the change in enthalpy of the reaction
The heat of reaction is -54.7 kJ/mol.
The equation of the reaction is;
HCl(aq) + NaOH(aq) → NaCl(aq) + H2O(l)
Number of moles of HCl = 50/1000 L × 1.27 M = 0.064 moles
Number of moles of NaOH = 50/1000 L × 1.32 M = 0.066 moles
The limiting reactant is HCl
Total volume of solution = 100mL
Total mass of solution = 100 g
Temperature rise = 8.49°C
Heat capacity of solution = 4.18 J/g⋅°C
Using;
H = mcdT
m = mass of solution
c = heat capacity of solution
dT = temperature rise
H = 100 g × 4.18 J/g⋅°C × 8.49°C = 3548.82 J
The heat of reaction = -ΔH/n = -(3.5kJ/0.064 moles)
= -54.7 kJ/mol
Learn more: https://brainly.com/question/6284546