Unlike a roller coaster, the seats in a Ferris wheel swivel so that the rider is always seated upright. An 80-ft-diameter Ferris wheel rotates once every 24 s.What is the apparent weight of a 40 kg passenger at the lowest point of the circle?What is the apparent weight of a 40 kg passenger at the highest point of the circle?

Respuesta :

Answer:

a

   [tex]F_A =425.42 \ N[/tex]

b

  [tex]F_A_H = 358.58 \ N[/tex]

Explanation:

From the question we are told that

    The diameter of the Ferris wheel is  [tex]d = 80 \ ft = \frac{80}{3.281} = 24.383[/tex]

    The  period of the Ferris wheel is  [tex]T = 24 \ s[/tex]

     The  mass of the passenger is  [tex]m_g = 40 \ kg[/tex]

The  apparent weight of the passenger at the lowest point is mathematically represented as

           [tex]F_A_L = F_c + W[/tex]

Where  [tex]F_c[/tex] is the centripetal force on the passenger,  which is mathematically represented as

         [tex]F_c =m * r * w^2[/tex]

Where [tex]w[/tex] is the angular velocity which is mathematically represented as

         [tex]w = \frac{2* \pi }{T}[/tex]

substituting values

         [tex]w = \frac{2* 3.142 }{24}[/tex]

         [tex]w = 0.2618 \ rad/s[/tex]

and  r  is the radius which is evaluated as [tex]r = \frac{d}{2}[/tex]

   substituting values

         [tex]r = \frac{24.383}{2}[/tex]

         [tex]r = 12.19 \ ft[/tex]

So

          [tex]F_c = 40 * 12.19* (0.2618)^2[/tex]

          [tex]F_c = 33.42 \ N[/tex]

W is the weight which is mathematically represented as

           [tex]W = 40 * 9.8[/tex]

           [tex]W = 392 \ N[/tex]

So

         [tex]F_A = 33.42 + 392[/tex]

         [tex]F_A =425.42 \ N[/tex]

The  apparent weight of the passenger at the highest point is mathematically represented as

          [tex]F_A_H = W- F_c[/tex]

substituting values

         [tex]F_A_H = 392 - 33.42[/tex]

         [tex]F_A_H = 358.58 \ N[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico