OL ⊥ ON start overline, O, L, end overline, \perp, start overline, O, N, end overline \qquad m \angle LOM = 3x + 38^\circm∠LOM=3x+38 ∘ m, angle, L, O, M, equals, 3, x, plus, 38, degrees \qquad m \angle MON = 9x + 28^\circm∠MON=9x+28 ∘ m, angle, M, O, N, equals, 9, x, plus, 28, degrees Find m\angle LOMm∠LOMm, angle, L, O, M:

Respuesta :

Answer:

44°

Step-by-step explanation:

If side OL is perpendicular to ON i.e OL ⊥ ON, then angle  ∠LON = 90°. If the is another line OM projecting from O with ∠LOM= (3x+38)° and ∠MON= (9x+28)°, then ∠MON +  ∠LOM =  ∠LON

Substituting the given angles int the expressions above to calculate the value of x;

(9x+28)° + (3x+38)° = 90°

12x+66 = 90°

12x = 90-66

12x = 24

x = 2°

Since ∠LOM= (3x+38)°, to get the value of the angle, we will substitute x = 2° into the expression as shown;

∠LOM= (3(2)+38)°

∠LOM= 6+38

∠LOM= 44°

Hence the measure of angle LOM is 44°

Answer: LOM = 44°

Step-by-step explanation: it’s right on khan academy (picture for proof)

Ver imagen 40080318
RELAXING NOICE
Relax