Respuesta :

Answer:

x+y:

16<x+y<19

y-x:

3<y-x<6

xy:

60<xy<84

y/x:

10/7<y/x<2

Step-by-step explanation:

For x+y, it'll be

  6<x<7

+

  10<y<12

=16<x+y<19

____

y-x:

  10<y<12

--

  6<x<7

because of the negative sign the x inequality is reversed so it is -7<x<-6

and then you do the math and get 3<y-x<5

________

xy:

   10<y<12

x

   6<x<7

you multiply and get 60<xy<84

________

y/x:

  10<y<12

divided by

  6<x<7

now what you do is you have to switch around the signs for the x inequality and everything becomes its reciprocal. So the x inequality becomes 1/7<1/x<1/6 and then you multiply and get 10/7<y/x<12/6

Please give me a brainliest award. This took so long. I hope this helped.

Inequalities are used to make non-equal comparisons between two expressions. The inequality signs are: [tex]\ne, >, <, \ge, \le[/tex].

The solutions and possible values to the inequalities are:

[tex]16 < x + y < 19[/tex]  [tex]\to[/tex] [tex]x + y= \{17,18\}[/tex]

[tex]4 < y - x < 5[/tex]  [tex]\to[/tex]   [tex]y - x = \{4.5, ...,4.9\}[/tex]

[tex]60 < xy < 84[/tex]   [tex]\to[/tex] [tex]xy = \{61,62,...83\}[/tex]

[tex]1.67 < \frac{y}{x} < 1.71[/tex]  [tex]\to[/tex]  [tex]\frac{x}{y} = \{1.67,1.68...1.70\}[/tex]

Given that:

[tex]6 < x < 7[/tex] and [tex]10 < y < 12[/tex]

To calculate the possible values of [tex]x + y[/tex], we simply add both inequalities; i.e.

[tex](6 < x < 7) + (10 < y < 12)[/tex]

This gives:

[tex]6 + 10 < x + y < 7 + 12[/tex]

[tex]16 < x + y < 19[/tex]

This means that the possible values of [tex]x + y[/tex] are between 16 and 19 (both exclusive). So, some possible values are:

[tex]x + y= \{17,18\}[/tex]

To calculate the possible values of [tex]y - x[/tex], we simply subtract the inequality of x from y; i.e.

[tex](10 < y < 12) - (6 < x < 7)[/tex]

This gives:

[tex]10 - 6 < y - x < 12 - 7[/tex]

[tex]4 < y - x < 5[/tex]

This means that the possible values of [tex]y - x[/tex] are between 4 and 5 (both exclusive). So, some possible values are:

[tex]y - x = \{4.5, ...,4.9\}[/tex]

To calculate the possible values of [tex]xy[/tex], we simply multiply both inequalities. i.e.

[tex](6 < x < 7) \times (10 < y < 12)[/tex]  

This gives:

[tex]6 \times 10 < x \times y < 7 \times 12[/tex]

[tex]60 < x \times y < 84[/tex]

[tex]60 < xy < 84[/tex]

This means that the possible values of [tex]xy[/tex] are between 60 and 84 (both exclusive). So, some possible values are:

[tex]xy = \{61,62,...83\}[/tex]

To calculate the possible values of [tex]\frac{y}{x}[/tex], we simply divide the inequality of y by x. i.e.

[tex](10 < y < 12) \div (6 < x < 7)[/tex]

This gives:

[tex]\frac{10}{6} < \frac{y}{x} < \frac{12}{7}[/tex]

[tex]1.67 < \frac{y}{x} < 1.71[/tex]

This means that the possible values of [tex]\frac{y}{x}[/tex] are between 1.67 and 1.71 (both exclusive). So, some possible values are:

[tex]\frac{x}{y} = \{1.67,1.68...1.70\}[/tex]

Hence, the solutions and possible values to the inequalities are:

[tex]16 < x + y < 19[/tex]  [tex]\to[/tex] [tex]x + y= \{17,18\}[/tex]

[tex]4 < y - x < 5[/tex]  [tex]\to[/tex]   [tex]y - x = \{4.5, 4.9...\}[/tex]

[tex]60 < xy < 84[/tex]   [tex]\to[/tex] [tex]xy = \{61,62,...83\}[/tex]

[tex]1.67 < \frac{y}{x} < 1.71[/tex]  [tex]\to[/tex]  [tex]\frac{x}{y} = \{1.67,1.68...1.70\}[/tex]

Read more about inequalities:

https://brainly.com/question/20383699

ACCESS MORE
EDU ACCESS
Universidad de Mexico