A right triangle has legs with lengths equal to 10 inches and 9x inches. Its hypotenuse measures (x + 10) inches. What is the approximate value of the hypotenuse? 10 inches 10.25 inches 20.25 inches 81 inches

Respuesta :

Answer:

10.25 inches

Step-by-step explanation:

Given,

Perpendicular ( p ) = 9x

Base ( b ) = 10

Hypotenuse ( h ) = x + 10

Now, let's find the value of x

Using Pythagoras theorem:

[tex] {h}^{2} = {p}^{2} + {b}^{2} [/tex]

Plug the values

[tex] {(x + 10)}^{2} = {(9x)}^{2} + {(10)}^{2} [/tex]

Using [tex] {(a + b)}^{2} = {a}^{2} + 2ab + {b}^{2} [/tex] , expand the expression

[tex] {x}^{2} + 20x + 100 = {(9x)}^{2} + {10}^{2} [/tex]

To raise a product to a power , raise each factor to that power

[tex] {x}^{2} + 20x + 100 = 81 {x}^{2} + {10}^{2} [/tex]

Evaluate the power

[tex] {x}^{2} + 20x + 100 = 81 {x}^{2} + 100[/tex]

Cancel equal terms on both sides of the equation

[tex] {x}^{2} + 20x = 81 {x}^{2} [/tex]

Move x² to R.H.S and change its sign

[tex]20x = 81 {x}^{2} - {x}^{2} [/tex]

Calculate

[tex]20x = 80 {x}^{2} [/tex]

Swap both sides of the equation and cancel both on both sides

[tex]80x = 20[/tex]

Divide both sides of the equation by 80

[tex] \frac{80x}{80} = \frac{20}{80} [/tex]

Calculate

[tex]x = \frac{20}{80} [/tex]

Reduce the numbers with 20

[tex]x = \frac{1}{4} [/tex]

The value of X is [tex] \frac{1}{4} [/tex]

Now, let's replace the value of x to find the approximate value of hypotenuse

Hypotenuse = [tex] \frac{1}{4} + 10[/tex]

Write all numerators above the common denominator

[tex] \frac{1 + 40}{4} [/tex]

Add the numbers

[tex] \frac{41}{4} [/tex]

[tex] = 10.25[/tex] inches

Hope this helps..

best regards!!

Ver imagen Аноним

Answer:

10.25

Step-by-step explanation:

because I said so ya skoozie

RELAXING NOICE
Relax