Answer: The energy of a Br–F bond is 110 kJ/mol
Explanation:
The balanced chemical reaction is,
[tex]Br_2(g)+3F_2(g)\rightarrow 2BrF_3(g)[/tex]
The expression for enthalpy change is,
[tex]\Delta H=\sum [n\times B.E(reactant)]-\sum [n\times B.E(product)][/tex]
[tex]\Delta H=[(n_{Br_2}\times B.E_{Br_2})+(n_{F_2}\times B.E_{F_2}) ]-[(n_{BrF_3}\times B.E_{BrF_3})][/tex]
[tex]\Delta H=[(n_{Br_2}\times B.E_{Br-Br})+(n_{F_2}\times B.E_{F_F}) ]-[(n_{BrF_3}\times 3\times B.E_{Br-F})][/tex]
where,
n = number of moles
Now put all the given values in this expression, we get
[tex]\Delta H=[(1\times 193)+(3\times 155)]-[(2\times 3\times B.E_{Br-F})][/tex]
[tex]B.E_{Br-F}=110kJ/mol[/tex]
Thus the energy, in kJ/mol, of a Br–F bond is 110