When a 20.0-ohm resistor is connected across the terminals of a 12.0-V battery, the voltage across the terminals of the battery falls by 0.300 V. What is the internal resistance of this battery

Respuesta :

Answer:

The  internal resistance is  [tex]r = 0.5 \ \Omega[/tex]

Explanation:

From the question we are told that the resistance of

   The  resistance of the resistor is  [tex]R = 20.0\ \Omega[/tex]

    The  voltage is [tex]V = 12.0 \ V[/tex]

     The magnitude of the voltage fall is  [tex]e = 0.300\ V[/tex]

Generally the current flowing through the terminal due to the voltage of the battery  is  mathematically represented as

        [tex]I = \frac{V}{R}[/tex]

substituting values

        [tex]I = \frac{12.0 }{20 }[/tex]

       [tex]I = 0.6 \ A[/tex]

The internal resistance of the battery is mathematically represented as

      [tex]r = \frac{e}{I}[/tex]

substituting values

     [tex]r = \frac{0.300}{ 0.6 }[/tex]

    [tex]r = 0.5 \ \Omega[/tex]

The internal resistance of the battery is 0.5 ohms.

To calculate the internal resistance of the battery, we use the formula below

Formula:

  • (V/R)r = V'............. Equation 1

Where:

  • V = Voltage across the terminal of the battery
  • R = Resistance connected across the battery
  • r = internal resistance of the battery
  • V' = voltage drop of the battery.

Make r the subject of the equation

  • r = V'R/V............ Equation 2

From the question,

Given:

  • V = 12 V
  • R = 20 ohms
  • V' = 0.3 V

Substitute these values into equation 2

  • r = (0.3×20)/12
  • r = 6/12
  • r = 0.5 ohms.

Hence, The internal resistance of the battery is 0.5 ohms.

Learn more about internal resistance here: https://brainly.com/question/14883923

ACCESS MORE