Answer:
The horizontal acceleration of the block is 4.05 m/s².
Explanation:
The horizontal acceleration can be found as follows:
[tex] F = m \cdot a [/tex]
[tex] Fcos(\theta) - \mu_{k}N = m\cdot a [/tex]
[tex] Fcos(\theta) - \mu_{k}[mg - Fsen(\theta)] = m\cdot a [/tex]
[tex] a = \frac{Fcos(\theta) - \mu_{k}[mg - Fsen(\theta)]}{m} [/tex]
Where:
a: is the acceleration
F: is the force exerted by the rope = 28.2 N
θ: is the angle = 30°
[tex]\mu_{k}[/tex]: is the kinetic coefficient = 0.12
m: is the mass = 5 kg
g: is the gravity = 9.81 m/s²
[tex] a = \frac{28.2 N*cos(30) - 0.12[5 kg*9.81 m/s^{2} - 28.2 N*sen(30)]}{5 kg} = 4.05 m/s^{2} [/tex]
Therefore, the horizontal acceleration of the block is 4.05 m/s².
I hope it helps you!