Answer:
[tex]Perimeter = 14 + 7\sqrt{2}[/tex]
Step-by-step explanation:
Given:
Area of the square = 49 in²
Required
Determine the perimeter of the one of the congruent triangles
First, we'll determine the length of the square;
[tex]Area = Length * Length[/tex]
Substitute 49 for Area
[tex]49 = Length * Length[/tex]
[tex]49 = Length^2[/tex]
Take Square root of both sides
[tex]7 = Length[/tex]
[tex]Length = 7[/tex]
When the square is divided into two equal triangles through the diameter;
2 sides of the square remains and the diagonal of the square forms the hypotenuse of the triangle;
Calculating the diagonal, we have;
[tex]Hypotenuse^2 = Length^2 + Length^2[/tex] -- Pythagoras Theorem
[tex]Hypotenuse^2 = 7^2 + 7^2[/tex]
[tex]Hypotenuse^2 = 2(7^2)[/tex]
Take square root of both sides
[tex]Hypotenuse = \sqrt{2} * \sqrt{7^2}[/tex]
[tex]Hypotenuse = \sqrt{2} * 7[/tex]
[tex]Hypotenuse = 7\sqrt{2}[/tex]
The perimeter of one of the triangles is the sum of the 2 Lengths and the Hypotenuse
[tex]Perimeter = Length + Length + Hypotenuse[/tex]
[tex]Perimeter = 7 + 7 + 7\sqrt{2}[/tex]
[tex]Perimeter = 14 + 7\sqrt{2}[/tex]