Construct a 99% confidthence interval for the population mean .Assume the population has a normal distribution. A group of 19 randomly selected employees has a mean age of 22.4 years with a standard deviation of 3.8 years. Round to the nearest tenth.
A) Determine the critical value ta/2 with n-the 1 degrees of freedom
B) Determine the lower and upper bound of the confidence interval
C) Interpret the confidence interval.

Respuesta :

Answer with explanation:

Confidence interval for mean, when population standard deviation is unknown:

[tex]\overline{x}\pm t_{\alpha/2}\dfrac{s}{\sqrt{n}}[/tex]

, where [tex]\overline{x}[/tex] = sample mean

n= sample size

s= sample standard deviation

[tex]t_{\alpha/2}[/tex] = Critical t-value for n-1 degrees of freedom

We assume the population has a normal distribution.

Given, n= 19 , s= 3.8 , [tex]\overline{x}=22.4[/tex]

[tex]\alpha=1-0.99=0.01[/tex]

A) Critical t value for [tex]\alpha/2=0.005[/tex] and degree of 18 freedom

[tex]t_{\alpha/2}[/tex] = 2.8784

B) Required confidence interval:

[tex]22.4\pm ( 2.8744)\dfrac{3.8}{\sqrt{19}}\\\\=22.4\pm2.5058\\\\=(22.4-2.5058,\ 22.4+2.5058)=(19.8942,\ 24.9058)\approx(19.9,\ 24.9)[/tex]

Lower bound = 19.9 years

Uppen bound = 24.9 years

C) Interpretation: We are 99% confident that the true population mean of lies in (19.9, 24.9) .

ACCESS MORE
EDU ACCESS
Universidad de Mexico