Answer:
the expected area of the resulting circular region is 616.38 m²
Step-by-step explanation:
Given that:
[tex]f(r) = \left \{ {{\dfrac{3}{4}(1-(14-r)^2)} \atop {0 }} \right. \ \ 13 \leq r \leq 15[/tex] otherwise
The expected area of the resulting circular region is:
= [tex]E(\pi r^2)[/tex]
= [tex]\pi E (r^2)[/tex]
To calculate [tex]E(r^2)[/tex]
[tex]E(r^2) = \int\limits^{15}_{13} {r^2} \ f(r) \ dr[/tex]
[tex]E(r^2) = \int\limits^{15}_{13} \ \dfrac{3r^2}{4}(1-(14-r)^2)dr[/tex]
[tex]E(r^2) = \dfrac{3}{4} \int\limits^{15}_{13} \ r^2 (1-196-r^2+28r) dr[/tex]
[tex]E(r^2) = \dfrac{3}{4} \int\limits^{15}_{13} \ r^2 (28r^3-r^4-195r^2)dr[/tex]
[tex]E(r^2) = \dfrac{3}{4}[\dfrac{28 r^4}{4}-\dfrac{r^5}{5}-\dfrac{195r^3}{3}]^{^{15}}}__{13}[/tex]
[tex]E(r^2) = \dfrac{3}{4} [ \dfrac{28 \times 50625}{4} - \dfrac{759375}{5} - \dfrac{195 \times 3375}{3} ]-[ \dfrac{28 \times 28561}{4} - \dfrac{371293}{5} - \dfrac{195 \times 2197}{3} ][/tex]
[tex]E(r^2) = \dfrac{3}{4} [ 354375-151875-219375-199927+74258.6+142805][/tex]
[tex]E(r^2) = \dfrac{3}{4} [261.6][/tex]
[tex]E(r^2) = 196.2[/tex]
Recall:
The expected area of the resulting circular region is:
= [tex]E(\pi r^2)[/tex]
= [tex]\pi E (r^2)[/tex]
where;
[tex]E(r^2) = 196.2[/tex]
Then
The expected area of the resulting circular region is:
= [tex]\pi \times 196.2[/tex]
= 616.38 m²