Respuesta :
Answer:
S = [0.2069,0.7931]
Step-by-step explanation:
Transition Matrix:
[tex]P=\left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right][/tex]
Stationary matrix S for the transition matrix P is obtained by computing powers of the transition matrix P ( k powers ) until all the two rows of transition matrix p are equal or identical.
Transition matrix P raised to the power 2 (at k = 2)
[tex]P^{2} =\left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right] X \left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right][/tex]
[tex]P^{2} =\left[\begin{array}{ccc}0.2203&0.7797\\0.2034&0.7966\end{array}\right][/tex]
Transition matrix P raised to the power 3 (at k = 3)
[tex]P^{3} =\left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right] X \left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right]X\left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right][/tex]
[tex]P^{3} =\left[\begin{array}{ccc}0.2203&0.7797\\0.2034&0.7966\end{array}\right] X \left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right][/tex]
[tex]P^{3} =\left[\begin{array}{ccc}0.2086&0.7914\\0.2064&0.7936\end{array}\right][/tex]
Transition matrix P raised to the power 4 (at k = 4)
[tex]P^{4} =\left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right] X \left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right]X\left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right]X\left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right][/tex]
[tex]P^{4} =\left[\begin{array}{ccc}0.2086&0.7914\\0.2064&0.7936\end{array}\right] X \left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right][/tex]
[tex]P^{4} =\left[\begin{array}{ccc}0.2071&0.7929\\0.2068&0.7932\end{array}\right][/tex]
Transition matrix P raised to the power 5 (at k = 5)
[tex]P^{5} =\left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right] X \left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right]X\left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right]X\left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right]X\left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right][/tex]
[tex]P^{5} =\left[\begin{array}{ccc}0.2071&0.7929\\0.2068&0.7932\end{array}\right] X \left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right][/tex]
[tex]P^{5} =\left[\begin{array}{ccc}0.2069&0.7931\\0.2069&0.7931\end{array}\right][/tex]
P⁵ at k = 5 both the rows identical. Hence the stationary matrix S is:
S = [ 0.2069 , 0.7931 ]
