Answer:
[tex]\mathbf{V = 1296 \pi }[/tex]
Step-by-step explanation:
Given that :
Find the volume of the region enclosed by the cylinder [tex]x^2 + y^2 =36[/tex] and the plane z = 0 and y + z = 36
From y + z = 36
z = 36 - y
The volume of the region can be represented by the equation:
[tex]V = \int\limits \int\limits_D(36-y)dA[/tex]
In this case;
D is the region given by [tex]x^2 + y^2 = 36[/tex]
Relating this to polar coordinates
x = rcosθ y = rsinθ
x² + y² = r²
x² + y² = 36
r² = 36
r = [tex]\sqrt{36}[/tex]
r = 6
dA = rdrdθ
r → 0 to 6
θ to 0 to 2π
Therefore:
[tex]V = \int\limits^{2 \pi} _0 \int\limits ^6_0 (36-r sin \theta ) (rdrd \theta)[/tex]
[tex]V = \int\limits^{2 \pi} _0 \int\limits ^6_0 (36-r^2 sin \theta ) drd \theta[/tex]
[tex]V = \int\limits^{2 \pi} _0 [\dfrac{36r^2}{2}- \dfrac{r^3}{3}sin \theta]^6_0 \ d\theta[/tex]
[tex]V = \int\limits^{2 \pi} _0 [648- \dfrac{216}{3}sin \theta]d\theta[/tex]
[tex]V = \int\limits^{2 \pi} _0 [648+\dfrac{216}{3}cos \theta]d\theta[/tex]
[tex]V = [648+\dfrac{216}{3}cos \theta]^{2 \pi}_0[/tex]
[tex]V = [648(2 \pi -0)+\dfrac{216}{3}(1-1)][/tex]
[tex]V = [648(2 \pi )+\dfrac{216}{3}(0)][/tex]
[tex]V = 648(2 \pi )[/tex]
[tex]\mathbf{V = 1296 \pi }[/tex]