Answer:
[tex]sec(\theta) \times cosec(\theta) = \dfrac{tan^2 (\theta)+ 1}{tan (\theta)} = tan (\theta)+ \dfrac{1}{tan (\theta)} = p + \dfrac{1}{p}[/tex]
Step-by-step explanation:
The given trigonometric relations are
tan(θ) = p
sec(θ)×cosec(θ) = p + 1/p
We note that, when tan(θ) = p, we have;
p + 1/p = tan(θ) + 1/(tan(θ)) = (tan²(θ) + 1)/tan(θ)
By trigonometric ratios, we have;
tan²(θ) + 1 = sec²(θ) =1/cos²(θ) which gives;
(tan²(θ) + 1)/tan(θ) = 1/cos²(θ) × 1/tan(θ) = cos(θ)/sin(θ)×1/cos²(θ)
[tex]\dfrac{1}{cos^2(\theta)} \times \dfrac{cos (\theta)}{sin( \theta)} = \dfrac{1}{cos(\theta)} \times \dfrac{1}{sin( \theta)} = sec(\theta) \times cosec(\theta)[/tex]
Therefore;
[tex]If \ tan (\theta) = p \ then \ sec(\theta) \times cosec(\theta) = p + \dfrac{1}{p}[/tex]