Answer:
y = -0.85 + 0.09x; $49.82
Step-by-step explanation:
1. Calculate Σx, Σy, Σxy, and Σx²
The calculation is tedious but not difficult.
[tex]\begin{array}{rrrr}\mathbf{x} & \mathbf{y} & \mathbf{xy} & \mathbf{x^{2}}\\526 & 52.08 & 27394.08 & 276676\\625& 59.00 & 36875.00 &390625\\589 & 56.12 & 33054.68 & 346921\\409 & 25.72 & 10519.48 & 167281\\489 & 34.12& 16684.68 & 293121\\500 & 53.00 & 26500.00 &250000\\906 & 76.48 & 71102.88 & 820836\\251 &26.08 & 6546.08 & 63001\\595 & 50.60 & 30107.00 & 354025\\719 & 68.52 & 49265.88 & 516961\\\mathbf{5609} & \mathbf{503.72} &\mathbf{308049.76} & \mathbf{3425447}\\\end{array}[/tex]
2. Calculate the coefficients in the regression equation
[tex]a = \dfrac{\sum y \sum x^{2} - \sum x \sum xy}{n\sum x^{2}- \left (\sum x\right )^{2}} = \dfrac{503.7 \times 3425447 - 5609 \times 308049.76}{10 \times 3425447- 5609^{2}}\\\\= \dfrac{1725466163 - 1727851103.84}{34254470 - 31460881} = -\dfrac{2384941}{2793589}= \mathbf{-0.8537}[/tex]
[tex]b = \dfrac{n\sumx y - \sum x \sumxy}{n\sum x^{2}- \left (\sum x\right )^{2}} = \dfrac{3080498 - 2825365.48}{2793589} = \dfrac{255132}{2793589} = \mathbf{0.09133}[/tex]
To two decimal places, the regression equation is
y = -0.85 + 0.09x
3. Prediction
If x = 563,
y = -0.85 + 0.09x = -0.85 + 0.09 × 563 = -0.85 + 50.67 = $49.82
(If we don't round the regression equation to two decimal places, the predicted value is $50.56.)