Answer:
39896 miles will be traveled by at least 80% of the trucks
Step-by-step explanation:
Given that :
the mean [tex]\mu[/tex] = 50000
standard deviation [tex]\sigma[/tex] = 12000
we are to calculate how many miles will be traveled by at least 80% of the trucks.
This implies that :
[tex]P(X > x_o) = 0.8[/tex]
Likewise;
[tex]P(X < x_o) = 1- P(X > x_o)[/tex]
[tex]P(X < x_o) = 1-0.8[/tex]
[tex]P(X < x_o) = 0.2[/tex]
We all know that
[tex]z = \dfrac{X- \mu}{\sigma}[/tex]
[tex]P(\dfrac{X- \mu}{\sigma}< \dfrac{x_o - \mu }{\sigma}) = 0.2[/tex]
[tex]P({z < \dfrac{x_o - \mu }{\sigma}) = 0.2[/tex]
Using the z table to determine the value for (invNorm (0.2)); we have ;
[tex]\dfrac{x_o - \mu }{\sigma} = invNorm (0.2)[/tex]
[tex]{x_o - \mu } = {\sigma} \times invNorm (0.2)[/tex]
[tex]{x_o } = \mu + {\sigma} \times invNorm (0.2)[/tex]
From z tables; [tex]invNorm (0.2)= -0.842[/tex]
[tex]{x_o } = 50000 + 12000 \times(-0.842)[/tex]
[tex]{x_o } = 50000 -10104[/tex]
[tex]\mathbf{{x_o } =39896}[/tex]
Thus; 39896 miles will be traveled by at least 80% of the trucks