use the figure and given information below. Show the calculations that lead to your results. Given: Polygon ROTFL ~ Polygon SUBAG Perimeter of ROTFL is 52. a) Find m∠G. (1 pt) b) Find AG. (2 pts) c) Find the perimeter of Polygon SUBAG. (2 pts)

use the figure and given information below Show the calculations that lead to your results Given Polygon ROTFL Polygon SUBAG Perimeter of ROTFL is 52 a Find mG class=

Respuesta :

Answer:

a) [tex]\angle G = 125^\circ[/tex]

b) AG = 15 units

c) Perimeter of polygon SUBAG = 78 units

Step-by-step explanation:

Given:

Polygon ROTFL ~ Polygon SUBAG

Similar polygons mean they have similar angles and the ratio of corresponding sides and ratio of their perimeter are equal.

Part A:

Given that

[tex]m\angle R = 100^\circ\\m\angle O = 120^\circ\\m\angle T = 75^\circ\\M\angle L = 60^\circ[/tex]

[tex]m\angle L+M\angle L = 180^\circ\\\Rightarrow m\angle L=180-60=120^\circ[/tex]

Sum of all interior angles of a pentagon is [tex]540^\circ[/tex]

[tex]m\angle R+m\angle O+m\angle T+m\angle F+m\angle L=540^\circ\\\Rightarrow 100+120+75+m\angle F+120=540^\circ\\\Rightarrow m\angle F=125^\circ\\[/tex]

Due to similarity property of the two pentagons, [tex]\angle F =\angle G = 125^\circ[/tex]

Part B:

Ratio of corresponding sides is equal.

Given the sides SU = 12, RO = 8 and FL = 10 units respectively.

[tex]\dfrac{SU}{RO}=\dfrac{AG}{FL}\\\dfrac{12}{8}=\dfrac{AG}{10}\\\Rightarrow AG = 15\ units[/tex]

Part C:

Ratio of corresponding sides must be equal to ratio of perimeter of the two polygons:

[tex]\dfrac{RO}{SU} = \dfrac{\text{perimeter of ROTFL}}{\text{perimeter of SUBAG}}\\\Rightarrow \dfrac{8}{12} = \dfrac{52}{\text{perimeter of SUBAG}}\\\Rightarrow \text{perimeter of SUBAG} = 52 \times 1.5\\\Rightarrow \text{perimeter of SUBAG} = 78\ units[/tex]

So, the answers are:

a) [tex]\angle G = 125^\circ[/tex]

b) AG = 15 units

c) Perimeter of polygon SUBAG = 78 units

ACCESS MORE