Answer:
Correct answer is 54.82 ft.
Step-by-step explanation:
First of all, let us label the diagram and do the construction as per the attached answer image.
Let us consider [tex]\triangle ABC[/tex]:
[tex]\angle B = 90^\circ\\\angle ACB = 180-110 = 70^\circ[/tex]
Let side AB = d ft and let side BC = x ft
We need to find AB to find the shortest distance across the river.
Using trigonometric identity of tangent:
[tex]tan\theta = \dfrac{Perpendicular}{Base}[/tex]
[tex]tan 70 = \dfrac{d}{x}\\\Rightarrow x = \dfrac{d}{tan70} = 0.36d ..... (1)[/tex]
Now, let us have a look at another right angled triangle ABD:
Let us consider [tex]\triangle ABC[/tex]:
[tex]\angle B = 90^\circ\\\angle ADB = 180-150 = 30^\circ[/tex]
side AB = d ft and side BD = x+75 ft
Using trigonometric identity of tangent:
[tex]tan\theta = \dfrac{Perpendicular}{Base}[/tex]
[tex]tan 30 = \dfrac{d}{x+75}\\\text{Using equation (1)}:\\0.577 = \dfrac{d}{0.36d+75}\\\Rightarrow 0.207d + 43.27 = d\\\Rightarrow 0.793d = 43.27\\\Rightarrow d \approx 54.82\ ft[/tex]
Correct answer is 54.82 ft.