Answer:
Step-by-step explanation:
The above statement is written as
[tex]y = \frac{k}{ {x}^{3} } [/tex]
where k is constant of variation
y = 28 x = a
[tex]28 = \frac{k}{ {a}^{3} } \\ \\ k = 28 {a}^{3} [/tex]
The formula for the variation is
[tex]y = \frac{28 {a}^{3} }{ {x}^{3} } [/tex]
when x = 2a
y is
[tex]y = \frac{28 {a}^{3} }{( {2a)}^{3} } \\ y = \frac{ {28a}^{3} }{ {8a}^{3} } \\ \\ y = \frac{28}{8} \\ \\ y = \frac{7}{2} [/tex]
Hope this helps you