Respuesta :
Answer:
(a)10 ft/sec
(b)0.12 rad/sec
(c) [tex]-75 ft^2/sec[/tex]
Step-by-step explanation:
Using Pythagoras Theorem
[tex]C^2=A^2+B^2[/tex]
The distance A is always constant.
Taking derivatives with respect to time, we have:
[tex]2C \frac{dC}{dt}= 2B \frac{dB}{dt}[/tex]
(a) When C=25 feet and A=15 feet
[tex]25^2=15^2+B^2\\B^2=25^2-15^2\\B^2=400\\B=20 $ feet[/tex]
dC/dt= -4 ft/sec
[tex]2C \frac{dC}{dt}= 2B \frac{dB}{dt}[/tex]
[tex]2(25) (-4)= 2(20) \frac{dB}{dt}\\\\-400= 40 \frac{dB}{dt}\\\\\frac{dB}{dt} =-10 ft/sec[/tex]
Therefore, the rate (dB/dt) at which the distance from the fish to the dock getting shorter is: 10 ft/sec
(b)
Using Trigonometry
[tex]\sin \theta = \frac{A}{C}[/tex]
[tex]\frac{d}{dt} (\sin \theta) = \frac{d}{dt}\frac{A}{C}\\\\\cos \theta \dfrac{d\theta}{dt} = \dfrac{C\dfrac{dA}{dt}-A\dfrac{dC}{dt}}{C^2}\\\\ \dfrac{d\theta}{dt} = \dfrac{-A\dfrac{dC}{dt}}{C^2\cos \theta}[/tex]
When A = 15, C=25 feet
[tex]\cos \theta = \frac{20}{25}[/tex]
Therefore:
[tex]\dfrac{d\theta}{dt} = \dfrac{-15(-4)}{25^2 \times \frac{20}{25}}\\\dfrac{d\theta}{dt}=\dfrac{60}{500}\\\dfrac{d\theta}{dt}=0.12$ rad/sec[/tex]
The angle of elevation (the angle formed between the line and the water) is changing at a rate of 12 rad/sec.
(c)
Area of the Triangle, [tex]X=\frac12 BA[/tex]
[tex]\frac{dX}{dt} =\frac12(B\frac{dA}{dt}+A\frac{dB}{dt})\\\\\frac{dX}{dt} =\frac12A\frac{dB}{dt}[/tex]
Therefore, the rate at which the area of the right triangle is changing is:
[tex]\frac{dX}{dt} =\frac12(15)(-10)\\\\\frac{dX}{dt}=-75 ft^2/sec[/tex]
The area of the right triangle is decreasing at a rate of 75 square feet per second.
