yivsokh
yivsokh
17-07-2020
Mathematics
contestada
3/(2x-1)+4=6x/(2x-1)
Respuesta :
LazyBun
LazyBun
17-07-2020
Answer: x = 1/2
Explanation:
3/(2x-1)+4=6x/(2x-1)
Make both sides has the same denominator:
3/2x-1 + 4(2x-1)/(2x-1) = 6x/2x-1
Cut down all the denominator:
3 + 8x -4= 6x
8x - 1 = 6x
2x = 1
X= 1/2
Answer Link
VER TODAS LAS RESPUESTAS ( 58+ )
Otras preguntas
What value of x makes the equation true ? 4(2x-4)=16
All of the following expressions have a value between 0 and 1, excepta. \frac{(-3^{7})}{(-3)^9}b. 4^{-10}× 4^{6}c. \frac{(8^3)^3}{8^{-4}} d. ( \frac{2}{5} ^{8})
All of the following expressions have a value between 0 and 1, excepta. \frac{(-3^{7})}{(-3)^9}b. 4^{-10}× 4^{6}c. \frac{(8^3)^3}{8^{-4}} d. ( \frac{2}{5} ^{8})
All of the following expressions have a value between 0 and 1, excepta. \frac{(-3^{7})}{(-3)^9}b. 4^{-10}× 4^{6}c. \frac{(8^3)^3}{8^{-4}} d. ( \frac{2}{5} ^{8})
What value of x makes the equation true ? 4(2x-4)=16
All of the following expressions have a value between 0 and 1, excepta. \frac{(-3^{7})}{(-3)^9}b. 4^{-10}× 4^{6}c. \frac{(8^3)^3}{8^{-4}} d. ( \frac{2}{5} ^{8})
All of the following expressions have a value between 0 and 1, excepta. \frac{(-3^{7})}{(-3)^9}b. 4^{-10}× 4^{6}c. \frac{(8^3)^3}{8^{-4}} d. ( \frac{2}{5} ^{8})
In scientific notation, what is the sum of 2.3 times 10^{-3} and 5.4 times 10^{-4}?a. 2.84 times 10^{-3}b. 5.63 times 10^{-3}c. 7.7 times 10^{-7}d. 12.42 times
What value of x makes the equation true ? 4(2x-4)=16
What value of x makes the equation true ? 4(2x-4)=16
ACCESS MORE
EDU ACCESS