Respuesta :

Answer:

[tex]\displaystyle f(x)=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}[/tex]

Step-by-step explanation:

We are given the function:

[tex]f(x)=x^2+x+1[/tex].

And we want to turn this into vertex form.

Note that our given function is in the standard form:

[tex]f(x)=ax^2+bx+c[/tex]

In other words, a = 1, b = 1, and c = 1.

To convert from standard form to vertex form, we can either: (1) complete the square, or (2) find the vertex manually.

In most cases, the second method is more time efficient.

Vertex form is given by:

[tex]f(x)=a(x-h)^2+k[/tex]

Where a is the leading coefficient and (h, k) is the vertex.

We have already determined that a = 1.

Find the vertex. The x-coordinate of the vertex of a quadratic is given by:

[tex]\displaystyle x=-\frac{b}{2a}[/tex]

Therefore, our point is:

[tex]\displaystyle x=-\frac{(1)}{2(1)}=-\frac{1}{2}[/tex]

To find the y-coordinate or k, substitute this value back into the function:

[tex]\displaystyle f\left(-\frac{1}{2}\right)=\left(-\frac{1}{2}\right)^2+\left(-\frac{1}{2}\right)+1=\frac{3}{4}[/tex]

Thus, the vertex is (-1/2, 3/4). So, h = -1/2 and k = 3/4.

Hence, the vertex form is:

[tex]\displaystyle f(x)=(1)\left(x-\left(-\frac{1}{2}\right)\right)^2+\left(\frac{3}{4}\right)[/tex]

Simplify:

[tex]\displaystyle f(x)=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}[/tex]

Otras preguntas

ACCESS MORE