Monochromatic light falls on two very narrow slits 0.048 mm apart. Successive fringes on a screen 6.50 m away are 8.5 cm apart near the center of the pattern. Determine the wavelength and frequency of the light.

Respuesta :

Answer:

The wavelength is  [tex]\lambda = 6.28 *10^{-7}=628 nm[/tex]

The frequency is  [tex]f = 4.78 Hz[/tex]

Explanation:

From the question we are told that  

      The slit distance is [tex]d = 0.048 \ mm = 4.8 *0^{-5}\ m[/tex]

       The distance from the screen is  [tex]D = 6.50 \ m[/tex]

       The distance between fringes is  [tex]Y = 8.5 \ cm = 0.085 \ m[/tex]

Generally the distance between the fringes for a two slit interference is  mathematically represented as

           [tex]Y = \frac{\lambda * D}{d}[/tex]

=>       [tex]\lambda = \frac{Y * d }{D}[/tex]

substituting values      

           [tex]\lambda = \frac{0.085 * 4.8*10^{-5} }{6.50 }[/tex]

           [tex]\lambda = 6.27 *10^{-7}=628 nm[/tex]

Generally the frequency of the light is mathematically represented as

          [tex]f = \frac{c}{\lambda }[/tex]

where  c is  the speed of light with  values  

         [tex]c = 3.0 *10^{8} \ m/s[/tex]

substituting values  

      [tex]f = \frac{3.0*10^8}{6.28 *10^{-7}}[/tex]

      [tex]f = 4.78 Hz[/tex]

ACCESS MORE