Respuesta :
Answer:
60,480 is the correct answer.
Step-by-step explanation:
First of all, let us have a look at the formula of factorial of a number 'n':
[tex]n! = n \times (n-1) \times (n-2) \times ...... \times 1[/tex]
i.e. multiply n with (n-1) then by (n-2) upto 1.
Keep on subtracting 1 from the number and keep on multiplying until we reach to 1.
So, [tex]9![/tex] can be written as: [tex]9 \times 8 \times 7 \times ...... \times 1[/tex]
Similarly [tex]3![/tex] can be written as: [tex]3 \times 2 \times 1[/tex]
Re-writing [tex]9 ![/tex] :
[tex]9 \times 8 \times 7 \times ...... 3 \times 2 \times 1\\\Rightarrow 9 \times 8 \times 7 \times ...... 3 ![/tex]
Now, the expression to be evaluated:
[tex]\dfrac{9!}{3!} = \dfrac{9 \times 8 \times 7 \times ..... \times 3!}{3!}\\\Rightarrow 9 \times 8 \times 7 \times 6 \times 5 \times 4\\\Rightarrow 60480[/tex]