Respuesta :

Answer:

60,480 is the correct answer.

Step-by-step explanation:

First of all, let us have a look at the formula of factorial of a number 'n':

[tex]n! = n \times (n-1) \times (n-2) \times ...... \times 1[/tex]

i.e. multiply n with (n-1) then by (n-2) upto 1.

Keep on subtracting 1 from the number and keep on multiplying until we reach to 1.

So, [tex]9![/tex] can be written as: [tex]9 \times 8 \times 7 \times ...... \times 1[/tex]

Similarly [tex]3![/tex] can be written as: [tex]3 \times 2 \times 1[/tex]

Re-writing [tex]9 ![/tex] :

[tex]9 \times 8 \times 7 \times ...... 3 \times 2 \times 1\\\Rightarrow 9 \times 8 \times 7 \times ...... 3 ![/tex]

Now, the expression to be evaluated:

[tex]\dfrac{9!}{3!} = \dfrac{9 \times 8 \times 7 \times ..... \times 3!}{3!}\\\Rightarrow 9 \times 8 \times 7 \times 6 \times 5 \times 4\\\Rightarrow 60480[/tex]

Answer:

60480

Step-by-step explanation:

ACCESS MORE