Answer:
[tex] P(X=7)[/tex]
And using the probability mass function we got:
[tex]P(X=7)=(15C7)(0.23)^7 (1-0.23)^{15-7}=0.0271[/tex]
Step-by-step explanation:
Let X the random variable of interest, on this case we now that:
[tex]X \sim Binom(n=15, p=0.23)[/tex]
The probability mass function for the Binomial distribution is given as:
[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]
Where (nCx) means combinatory and it's given by this formula:
[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]
And we want to find the following probability:
[tex] P(X=7)[/tex]
And using the probability mass function we got:
[tex]P(X=7)=(15C7)(0.23)^7 (1-0.23)^{15-7}=0.0271[/tex]