A 170-km-long high-voltage transmission line 2.00 cm in diameter carries a steady current of 1,010 A. If the conductor is copper with a free charge density of 8.50 1028 electrons per cubic meter, how many years does it take one electron to travel the full length of the cable

Respuesta :

Answer:

The number of years is [tex]t_y = 22.8 \ years[/tex]

Explanation:

From the question we are told that

    The length of the transmission line is  [tex]L = 170 \ km = 170000 \ m[/tex]

    The diameter of the transmission line is  [tex]d = 2.0 \ cm = 0.02 \ m[/tex]

     The current which the transmission line carry is  [tex]I = 1,010 \ A[/tex]

      The charge density of the transmission line is  [tex]j = 8.50 *10^{28 } \ electron/m^3[/tex]

Now  the cross-sectional  area of the transmission line is mathematically represented  as

           [tex]A = \pi r^2[/tex]

Here r is the radius which is mathematically evaluated as

         [tex]r = \frac{d}{2}[/tex]

substituting values

         [tex]r = \frac{0.02}{2}[/tex]

         [tex]r = 0.01 \ m[/tex]

Hence

       [tex]A = 3.142 * (0.01)^2[/tex]

=>      [tex]A = 3.142 *10^{-4} \ m^2[/tex]

Now the drift velocity of electron is mathematically evaluated as

        [tex]v = \frac{I}{j* e * A }[/tex]

Where e is the charge on one electron and the values is  [tex]e = 1.60 *10^{-19} \ C[/tex]

       So

              [tex]v = \frac{ 1010}{8.50 *10^{28}* (1.60 *10^{-19}) * 3.142*10^{-4} }[/tex]

              [tex]v = 2.363 *10^{-4} \ m/s[/tex]

Now the time taken is  mathematically evaluated as

                [tex]t = \frac{L}{v }[/tex]

substituting values

                [tex]t = \frac{170000}{2.363 *10^{-4} }[/tex]

                [tex]t = 7.194*10^{8}\ s[/tex]

Converting to years

       [tex]t_y = \frac{t}{365\ days * 24 \ hours * 3600\ seconds}[/tex]

substituting values

        [tex]t_y =\frac{7.194 *10^{8}}{365 *24 * 3600}[/tex]

        [tex]t_y = 22.8 \ years[/tex]

     

ACCESS MORE