contestada

Automobile claim amounts are modeled by a uniform distribution on the interval [0, 10,000]. Actuary A reports X, the claim amount divided by 1000. Actuary B reports Y, which is X rounded to the nearest integer from 0 to 10.Calculate the absolute value of the difference

Respuesta :

This is not the complete question, the complete question is:

Automobile claim amounts are modeled by a uniform distribution on the interval [0, 10,000]. Actuary A reports X, the claim amount divided by 1000. Actuary B reports Y, which is X rounded to the nearest integer from 0 to 10.Calculate the absolute value of the difference between the 4th moment of X and the 4th moment of Y

A) 0

B) 33

C) 296

D) 303

E) 533

Answer: B) 33

Step-by-step explanation:

First lets say;

z: automobile claim amounts

x: the claim amount dived by 1000

y: x rounded to the nearest integer from 0 to 10

z ≅  V[0, 10,000]

x = z / 1000 ≅ V[0, 10 ] ⇒ Fx { 1/10, 0 ≤ x ≤ 10} 0, 0/10

y =  {0,     0 ≤ x < 0.5

       1,       0.5 ≤ x < 1.5

       2,       1.5 ≤ x < 2.5

       3,       2.5 ≤ x < 3.5

        ↓

       9,        8.5 ≤ x < 9.5

       10,       9.5 ≤ x < 10

SO 4th moment of x = E(x²) = ∫₀¹⁰x⁴ 1/10 dₓ

                                 = 1/10 (x⁵ / 5)₀¹⁰

                                  = 10⁵ / (10 * 5)

                                  = 100000/50

                                   = 2000

Now

4th moment of y = E(y⁴) = ∑/y y⁴ p( y=y)

                             = 0⁴p( y=0) + 1⁴p( y=1 ) + 2⁴p( y=2) + → + 10⁴p( y=10)

                             = 0 + 1⁴.p( 0.5 ≤ x < 1.5) +  2⁴.p( 1.5 ≤ x < 2.5) + 3⁴.p( 2.5 ≤ x < 3.5 ) + → + 10⁴.p( 9.5 ≤ x < 10 )

                   = 1/10 [ 1⁴(1.5 - 0.5) + 2⁴(2.5 - 1.5) + → + 9⁴(9.5 - 8.5) + 10⁴(10 - 9.5)]

                   = 1/10 [ 1⁴ + 2⁴ + → + 9⁴ + 1/2*10⁴] = 2033.3

now the absolute difference will be

AD = ║E(x⁴) - E(y⁴)║

     = ║ 2000 - 2033.3║

     = 33.3 ≈ 33

ACCESS MORE