Respuesta :
Answer:
[tex]x^{\frac{1}{8}}y^8[/tex].
Step-by-step explanation:
The given expression is
[tex](x^{\frac{1}{4}}y^{16})^{\frac{1}{2}}[/tex]
We need to find the expression, which is equivalent to the given expression.
The given expression can be rewritten as
[tex](x^{\frac{1}{4}})^{\frac{1}{2}}(y^{16})^{\frac{1}{2}}[/tex] [tex][\because (ab)^m=a^mb^m][/tex]
[tex](x^{\frac{1}{4}\times \frac{1}{2}})(y^{16\times \frac{1}{2}})[/tex] [tex][\because (a^m)^n=a^{mn}][/tex]
[tex]x^{\frac{1}{8}}y^8[/tex]
Therefore, the required expression is [tex]x^{\frac{1}{8}}y^8[/tex].
The simplified form of the indices is [tex]x^{1/4}y^8[/tex]
Given the expression:
[tex](x^{1/4}y^{16})^{1/2}[/tex]
Using the law of indices below:
[tex](a^m)^n = a^{mn}[/tex]
Multiplying the power will give:
[tex]= (x^{1/4})^{1/2} \cdot (y^{16})^{1/2}\\=x^{1/4}y^8[/tex]
Hence the simplified form of the indices is [tex]x^{1/4}y^8[/tex]
Learn more on indices here: brainly.com/question/8952483