Respuesta :

Answer:

[tex]x^{\frac{1}{8}}y^8[/tex].

Step-by-step explanation:

The given expression is

[tex](x^{\frac{1}{4}}y^{16})^{\frac{1}{2}}[/tex]

We need to find the expression, which is equivalent to the given expression.

The given expression can be rewritten as

[tex](x^{\frac{1}{4}})^{\frac{1}{2}}(y^{16})^{\frac{1}{2}}[/tex]     [tex][\because (ab)^m=a^mb^m][/tex]

[tex](x^{\frac{1}{4}\times \frac{1}{2}})(y^{16\times \frac{1}{2}})[/tex]     [tex][\because (a^m)^n=a^{mn}][/tex]

[tex]x^{\frac{1}{8}}y^8[/tex]

Therefore, the required expression is [tex]x^{\frac{1}{8}}y^8[/tex].

The simplified form of the indices is [tex]x^{1/4}y^8[/tex]

Given the expression:

[tex](x^{1/4}y^{16})^{1/2}[/tex]

Using the law of indices below:

[tex](a^m)^n = a^{mn}[/tex]

 

Multiplying the power will give:

[tex]= (x^{1/4})^{1/2} \cdot (y^{16})^{1/2}\\=x^{1/4}y^8[/tex]

 

Hence the simplified form of the indices is [tex]x^{1/4}y^8[/tex]

Learn more on indices here: brainly.com/question/8952483

ACCESS MORE