Answer:
See explanation
Step-by-step explanation:
A Pythagorean triple is a set of 3 positive integer numbers, a, b, and c which satisfies the Pythagorean theorem: [tex]c^2=a^2+b^2[/tex]
Given the identity: [tex](x^2 - 1)^2 + (2x)^2 = (x^2 + 1)^2.[/tex]
We verify that the numbers given table are Pythagorean triples.
[tex]14^2+48^2=2500=50^2\\16^2+63^2=4225=65^2\\18^2+80^2=6724=82^2\\20^2+99^2=10201=101^2[/tex]
Next, we examine the pattern:
[tex]\left|\begin{array}{c|c|c|c|c}x-value&x^2-1&2x&x^2 + 1&$Triple\\--&--&--&--&----\\7&48&14&50&(14,48,50)\\8&63&16&65&(16,63,65)\\9&80&18&82&(18,80,82)\\10&99&20&101&(20,99,101)\end{array}\right|[/tex]
From the pattern, our first number is 2x, the second number is x² - 1, and the third number(hypotenuse) is x² + 1
Next, we show that (x² - 1)² + (2x)² = (x² + 1)² is an identity
[tex]LHS: (x^2 - 1)^2 + (2x)^2 \\= (x^2-1)(x^2-1)+2x^2\\=x^4-2x^2+1+4x^2\\=x^4+2x^2+1[/tex]
[tex]RHS: (x^2+1)^2\\= (x^2+1) (x^2+1)\\=x^4+2x^2+1[/tex]
Since Left Hand Side=Right hand Side. For all x, the equation is always true.
Therefore, the pattern is true for any Pythagorean triple.