Answer:
S 75°E
S 55°E
Step-by-step explanation:
Take the law if sines of a triangle:
[tex] \frac{a}{sinA} = \frac{b}{sinB} = \frac{c}{sinC} [/tex]
Where,
a = 28 miles
B = 25°
b = 12 miles
First solve for A, using the law of sines:
[tex] \frac{a}{sinA} = \frac{b}{sinB} [/tex]
[tex] \frac{28}{sinA} = \frac{12}{sin25} [/tex]
Cross multiply:
[tex] 28 sin25 = 12 sinA [/tex]
[tex] 11.83 = 12 sinA [/tex]
[tex] Sin A = \frac{11.83}{12} [/tex]
[tex] Sin A = 0.986 [/tex]
[tex]A = sin^-^1(0.986)[/tex]
[tex] A = 80.44 degrees [/tex]
Since A = 80.44° find A supplement, A`:
A` = 180 - 80.44
A` = 99.56°
If A` + B < 180°, find C.
Thus,
A` + B = 99.56 + 25 = 124.56
We can see that A` + B < 180
Find C:
C = 180 - (80.44+25) = 74.56° ≈ 75°
C` = 180 - (99.56+25) = 55.44° ≈ 55°
Rewrite in bearing form:
S 75°E
S 55°E