Please help! For all values of x, F(x)= x-1 And G(x)=2x^2+3 Solve fg(x)= gf(x)

Answer:
[tex]\boxed{\sf \ \ \ x=\dfrac{3}{4} \ \ \ }[/tex]
Step-by-step explanation:
hello,
f(x)=x-1
[tex]g(x)=2x^2+3[/tex]
so
[tex]fog(x)=f(g(x))=f(2x^2+3)=2x^2+3-1=2x^2+2 \ and \\gof(x)=g(f(x))=g(x-1)=2(x-1)^2+3=2x^2-4x+2+3=2x^2-4x+5 \ \ So\\\fog(x)=gof(x) <=>2x^2+2=2x^2-4x+5\\<=>4x=5-2=3\\<=>x=\dfrac{3}{4}[/tex]
hope this helps
[tex]\frac{3}{4}[/tex]
The composition of a function is a process in which two functions [tex]f,g[/tex], are combined to produce a new function, [tex]h[/tex], with the formula [tex]h(x)=g(f(x))[/tex]. It means that the [tex]g[/tex] function is being applied to the [tex]x[/tex] function.
[tex]f(x)=x-1\\g(x)=2x^2+3[/tex]
[tex]f(g(x))=f(2x^2+3)[/tex]
[tex]=2x^2+3-1\\=2x^2+2[/tex]
[tex]g(f(x))=g(x-1)[/tex]
[tex]=2(x-1)^2+3\\=2x^2+2-4x+3\\=2x^2-4x+5[/tex]
[tex]f(g(x))=g(f(x))[/tex]
[tex]2x^2+2=2x^2-4x+5[/tex]
[tex]4x=3[/tex]
[tex]x=\frac{3}{4}[/tex]
For more information:
https://brainly.com/question/12431044?referrer=searchResults