Respuesta :

Answer:  (a) [tex]\bold{A=900\bigg(1+\dfrac{0.07}{4}\bigg)^{4t}}[/tex]

               (b) A = $1680.67

               (c) t = 9.99 years

               (d) A = $1689.85

Step-by-step explanation:

[tex]A=P\bigg(1+\dfrac{r}{n}\bigg)^{nt}[/tex]   where

  • A is the amount accrued (balance)
  • P is the principal (original/initial amount)
  • r is the interest rate (convert to a decimal)
  • n is the number of times compounded per year
  • t is the number of years

a) Given: P = 900, r = 7% = 0.07, n = quarterly = 4

[tex]\bold{A=900\bigg(1+\dfrac{0.07}{4}\bigg)^{4t}}[/tex]

b) Given: P = 900, r = 7% = 0.07, n = quarterly = 4, t = 9

[tex]A=900\bigg(1+\dfrac{0.07}{4}\bigg)^{4(9)}\\\\\\A = 900\bigg(1+\dfrac{0.07}{4}\bigg)^{36}[/tex]

A = 1680.67

c) Given: A = 1800, P = 900, r = 7% = 0.07, n = quarterly = 4

[tex]1800=900\bigg(1+\dfrac{0.07}{4}\bigg)^{4t}\\\\\\2=\bigg(1+\dfrac{0.07}{4}\bigg)^{4t}\\\\\\ln\ 2=ln\bigg(1+\dfrac{0.07}{4}\bigg)^{4t}\\\\\\ln\ 2 = 4t\ ln\bigg(1+\dfrac{0.07}{4}\bigg)\\\\\\\dfrac{ln\ 2}{4\ ln\bigg(1+\dfrac{0.07}{4}\bigg)}=t\\\\\\\bold{t=9.99}[/tex]

d) [tex]A=Pe^{rt}[/tex]

Given: P = 900, r = 7% = 0.07, t = 9

[tex]A=900e^{0.07(9)}\\\\\\A=900e^{.63}\\\\\\\bold{A=1689.85}[/tex]

ACCESS MORE