Respuesta :

Answer:

[tex]2xy\sqrt[3]{2x^2z}[/tex] and [tex]2xy(2x^2z)^{\frac{1}{3}}[/tex].

Step-by-step explanation:

The given radical expression is

[tex]\sqrt[3]{16x^5y^3z}[/tex]

We have to simplify the above expression.

The above expression can be written as

[tex]\sqrt[3]{(2\times 8)(x^{3+2})y^3z}[/tex]

[tex]\sqrt[3]{(2\times 2^3)(x^3\times x^2)y^3z}[/tex]    [tex][\because a^{m+n}=a^ma^n][/tex]

[tex]\sqrt[3]{(2^3x^3y^3)(2x^2z)}[/tex]

[tex]\sqrt[3]{(2xy)^3}\sqrt[3]{2x^2z}[/tex]    [tex][\because (ab)^m=a^mb^m][/tex]

[tex]2xy\sqrt[3]{2x^2z}[/tex]    [tex][\because \sqrt[n]{x^n}=x][/tex]

It can be written as exponent form.

[tex]2xy(2x^2z)^{\frac{1}{3}}[/tex]    [tex][\because \sqrt[n]{a}=a^{\frac{1}{n}}][/tex]

Therefore, the required expressions are [tex]2xy\sqrt[3]{2x^2z}[/tex] and [tex]2xy(2x^2z)^{\frac{1}{3}}[/tex].

ACCESS MORE