Respuesta :
Answer:
(a) V = 65.625 Volts
(b) V = 131.25 Volts
(c) V = 131.25 Volts
Explanation:
Recall that:
1) in a metal sphere the charges distribute uniformly around the surface, and the electric field inside the sphere is zero, and the potential is constant equal to:
[tex]V=k\frac{Q}{R}[/tex]
2) the electric potential outside of a charged metal sphere is the same as that of a charge of the same value located at the sphere's center:
[tex]V=k\frac{Q}{r}[/tex]
where k is the Coulomb constant ( [tex]9\,\,10^9\,\,\frac{N\,m^2}{C^2}[/tex] ), Q is the total charge of the sphere, R is the sphere's radius (0.24 m), and r is the distance at which the potential is calculated measured from the sphere's center.
Then, at a distance of:
(a) 48 cm = 0.48 m, the electric potential is:
[tex]V=k\frac{Q}{r}=9\,\,10^9 \,\frac{3.5\,\,10^{-9}}{0.48} =65.625\,\,V[/tex]
(b) 24 cm = 0.24 m, - notice we are exactly at the sphere's surface - the electric potential is:
[tex]V=k\frac{Q}{r}=9\,\,10^9 \,\frac{3.5\,\,10^{-9}}{0.24} =131.25\,\,V[/tex]
(c) 12 cm (notice we are inside the sphere, and therefore the potential is constant and the same as we calculated for the sphere's surface:
[tex]V=k\frac{Q}{R}=9\,\,10^9 \,\frac{3.5\,\,10^{-9}}{0.24} =131.25\,\,V[/tex]
Answer:
c) a difference in electric potential
Explanation:
my insta: priscillamarquezz