Respuesta :
Answer:
There are [tex]1.202\times 10^{24}[/tex] atoms and [tex]1.502\times 10^{23}[/tex] molecules in the compound.
Explanation:
The molar mass of the sulphur is [tex]32.065\,\frac{g}{mol}[/tex]. The Avogradro's Law states that exists [tex]6.022\times 10^{23}\,\frac{atom}{mol}[/tex]. The quantity of atoms in a quantity of mass is derived from dividing the mass by the molar mass and multiplying it by the Avogadro's Number. That is:
[tex]n_{atom} = m_{S}\cdot \frac{n_{A}}{M_{S}}[/tex]
Where:
[tex]m_{S}[/tex] - Mass of the sample, measured in grams.
[tex]n_{A}[/tex] - Avogadro's Number, measured in atoms per mole.
[tex]M_{S}[/tex] - Molar mass of the sulphur, measured in grams per mole.
If [tex]m_{S} = 64\,g[/tex], [tex]n_{A} = 6.022\times 10^{23}\,\frac{atoms}{mol}[/tex] and [tex]M_{S} = 32.065\,\frac{g}{mol}[/tex], then:
[tex]n_{atom} = (64\,g)\cdot \left(\frac{6.022\times 10^{23}\,\frac{atoms}{mol} }{32.065\,\frac{g}{mol} }\right)[/tex]
[tex]n_{atom} = 1.202\times 10^{24}\,atoms[/tex]
There are [tex]1.202\times 10^{24}[/tex] atoms in the compound.
Now, the molecular weight of the compound is:
[tex]M_{S_{8}} = 8\cdot \left(32.065\,\frac{g}{mol} \right)[/tex]
[tex]M_{S_{8}} = 256.52\,\frac{g}{mol}[/tex]
The quantity of molecules in a quantity of mass is derived from dividing the mass by the molecular weight and multiplying it by the Avogadro's Number. That is:
[tex]n_{molecule} = m_{S_{8}}\cdot \frac{n_{A}}{M_{S_{8}}}[/tex]
Where:
[tex]m_{S_{8}}[/tex] - Mass of the sample, measured in grams.
[tex]n_{A}[/tex] - Avogadro's Number, measured in atoms per mole.
[tex]M_{S_{8}}[/tex] - Molecular weight of the compound (octosulphur), measured in grams per mole.
If [tex]m_{S_{8}} = 64\,g[/tex], [tex]n_{A} = 6.022\times 10^{23}\,\frac{molecules}{mol}[/tex] and [tex]M_{S_{8}} = 256.52\,\frac{g}{mol}[/tex], then:
[tex]n_{molecule} = (64\,g)\cdot \left(\frac{6.022\times 10^{23}\,\frac{molecules}{mol} }{256.52\,\frac{g}{mol} }\right)[/tex]
[tex]n_{molecule} = 1.502\times 10^{23}\,molecules[/tex]
There are [tex]1.502\times 10^{23}[/tex] molecules in the compound.