Answer:
90% confidence interval for the population mean
(16.971 , 19.029)
Step-by-step explanation:
Step(i):-
Given mean of the sample x⁻ = 18 days
Standard deviation of the Population 'σ' = 3 days
Given sample size 'n' =23
Step(ii):-
90% confidence interval for the population mean is determined by
[tex]((x^{-} - Z_{0.10} \frac{S.D}{\sqrt{n} } , x^{-} + Z_{0.10} \frac{S.D}{\sqrt{n} } )[/tex]
Critical value Z = 1.645
[tex]((18 - 1.645 \frac{3}{\sqrt{23} } , 18+ 1.645 \frac{3}{\sqrt{23} } )[/tex]
(18 -1.029 , 18 + 1.029)
(16.971 , 19.029)
final answer:-
90% confidence interval for the population mean
(16.971 , 19.029)