Answer:
d. (x+2)/(-x²-5)
Step-by-step explanation
ƒ(x) = x + 2/(2x²)
The function is undefined when x = 0.
b. ƒ(x) = (2x + 4)/(3x + 3)
The function is undefined when 3x + 3 = 0, i.e., when x = -1.
c. ƒ(x) = (6x - 5)/(x² - 7)
The function is undefined when x² - 7 = 0, i.e., when x = √7.
d. ƒ(x) = (x+2)/(-x²-5) = -(x+2)/(x² + 5)
The function would be undefined if x² + 5 = 0, i.e., if x² = -5. However, the square of a real number cannot be negative.
This function has no excluded values.