Respuesta :
Answer and Step-by-step explanation:
The computation is shown below:
Let us assume that
Spam Email be S
And, test spam positive be T
Given that
P(S) = 0.3
[tex]P(\frac{T}{S}) = 0.95[/tex]
[tex]P(\frac{T}{S^c}) = 0.05[/tex]
Now based on the above information, the probabilities are as follows
i. P(Spam Email) is
= P(S)
= 0.3
[tex]P(S^c) = 1 - P(S)[/tex]
= 1 - 0.3
= 0.7
ii. [tex]P(\frac{S}{T}) = \frac{P(S\cap\ T}{P(T)}[/tex]
[tex]= \frac{P(\frac{T}{S}) . P(S) }{P(\frac{T}{S}) . P(S) + P(\frac{T}{S^c}) . P(S^c) }[/tex]
[tex]= \frac{0.95 \times 0.3}{0.95 \times 0.3 + 0.05 \times 0.7}[/tex]
= 0.8906
iii. [tex]P(\frac{S}{T^c}) = \frac{P(S\cap\ T^c}{P(T^c)}[/tex]
[tex]= \frac{P(\frac{T^c}{S}) . P(S) }{P(\frac{T^c}{S}) . P(S) + P(\frac{T^c}{S^c}) . P(S^c) }[/tex]
[tex]= \frac{(1 - 0.95)\times 0.3}{ (1 -0.95)0.95 \times 0.3 + (1 - 0.05) \times 0.7}[/tex]
= 0.0221
We simply applied the above formulas so that the each part could come