Respuesta :

Answer:

f(x) = 3.56(2.04)^x

Step-by-step explanation:

Put x as 2, to see whether the output will be close to 16.

116.4 - 42.8 ln(2) = 86.733301

2.04(3.56)^2 = 25.854144

3.56(2.04)^2 = 14.815296

-42.8 + 116.4 ln(2) = 37.882332

Put x as 3, to see whether the output will be close to 30.

116.4 - 42.8 ln(3) =69.379394

2.04(3.56)^3 = 92.040753

3.56(2.04)^3 = 30.223204

-42.8 + 116.4 ln(3) = 85.07847

Put x as 6, to see whether the output will be close to 271.

116.4 - 42.8 ln(6) = 39.712695

2.04(3.56)^6 = 4152.69615

3.56(2.04)^6 = 256.584846

-42.8 + 116.4 ln(6) = 165.760802

Put x as 7, to see whether the output will be close to 522.

116.4 - 42.8 ln(7) = 33.115046

2.04(3.56)^7 = 14783.598295

3.56(2.04)^7 = 523.433085

-42.8 + 116.4 ln(7) = 183.703941

The exponential function that models the data is f(x) = 3.56(2.04)^x.