Respuesta :

Answer:

nth term = 2n^2 - 3n - 6.

Step-by-step explanation:

                      n   =  1   2    3    4     5     6    7  

                             - 7   -4   3   14   29   48   71  

Differences                3    7   11    15   19    23

Differences                   4   4     4    4     4

So the first term in the Rule is 2n^2

Subtracting  the values of 2n^2 from the original terms:

                  - 7   -4   3      14   29   48   71  

2n^2           2     8  18    32   50   72   98

Subtrct       -9   -12 -15  -18   -21   -24   -27

                       -3     -3    -3   -3    -3     -3

So we have -3n  and the last  term is  -6 because    -7 = 2(1)^2 -3 - 6  and the other terms fit this pattern as well.

The nth term rule of the provided quadratic sequence to find the n'th term of the sequence is 2n²-3n-6.

What is quadratic sequence?

The quadratic sequence is the series of the numbers in which the rule for the n'th term included an n squared term (). The quadratic equation for n can be given as,

[tex]an^2+bn+c[/tex]

Here, (2a) is equal to the second difference, (3a+b) is equal to the first difference and (a+b+c) is equal to the first term.

The sequence given in the problem is

[tex]-7, -4, 3, 14, 29, 48, 71[/tex]

Thus, (a+b+c) is,

[tex]a+b+c=-7[/tex]                ......1

The first difference between the sequence is,

[tex]3,7,11,15,19,23[/tex]

Thus, the value of (3a+b) is,

[tex]3a+b=3\\b=3-3a[/tex]                      ......2

The second difference between the sequence is,

[tex]4,4,4,4,4[/tex]

Thus, the value of 2a is,

[tex]2a=4\\a=\dfrac{4}{2}=2[/tex]

Put this value in equation 2 as,

[tex]b=3-3\times2\\b=-3[/tex]

Put the value of a and b in equation 1 as,

[tex]2-3+c=-7\\c=-7+1\\c=-6[/tex]

Put these values in the above formula as,

[tex]2n^2-3n-6[/tex]

The nth term rule of the provided quadratic sequence to find the n'th term of the sequence is,

[tex]2n^2-3n-6[/tex]

Learn more about the quadratic sequence here;

https://brainly.com/question/26373760