contestada

A child of mass 46.2 kg sits on the edge of a merry-go-round with radius 1.9 m and moment of inertia 130.09 kg m2 . The merrygo-round rotates with an angular velocity of 2.4 rad/s. The child then walks towards the center of the merry-go-round and stops at a distance 0.779 m from the center. Now what is the angular velocity of the merry-go-round

Respuesta :

Answer:

The angular velocity is [tex]w_f = 4.503 \ rad/s[/tex]

Explanation:

From the question we are told that

   The mass of the child is  [tex]m_c = 46.2 \ kg[/tex]

    The radius of the merry go round is  [tex]r = 1.9 \ m[/tex]

     The moment of inertia of the merry go round is [tex]I_m = 130.09 \ kg \cdot m^2[/tex]

      The angular velocity of the merry-go round is  [tex]w = 2.4 \ rad/s[/tex]

       The position of the child from the center of the merry-go-round is  [tex]x = 0.779 \ m[/tex]

According to the law of angular momentum conservation

    The initial angular momentum  =  final  angular momentum

So  

       [tex]L_i = L_f[/tex]

=>     [tex]I_i w_i = I_fw_f[/tex]

Now   [tex]I_i[/tex] is the initial moment of inertia of the system which is mathematically represented as

          [tex]I_i = I_m + I_{b_1}[/tex]

Where  [tex]I_{b_i}[/tex] is the initial moment of inertia of the boy which is mathematically evaluated as

      [tex]I_{b_i} = m_c * r[/tex]

substituting values

      [tex]I_{b_i} = 46.2 * 1.9^2[/tex]

      [tex]I_{b_i} = 166.8 \ kg \cdot m^2[/tex]

Thus

   [tex]I_i =130.09 + 166.8[/tex]        

   [tex]I_i = 296.9 \ kg \cdot m^2[/tex]      

Thus  

     [tex]I_i * w_i =L_i= 296.9 * 2.4[/tex]

       [tex]L_i = 712.5 \ kg \cdot m^2/s[/tex]

Now  

     [tex]I_f = I_m + I_{b_f }[/tex]

Where  [tex]I_{b_f}[/tex] is the final  moment of inertia of the boy which is mathematically evaluated as

         [tex]I_{b_f} = m_c * x[/tex]

substituting values

         [tex]I_{b_f} = 46.2 * 0.779^2[/tex]

         [tex]I_{b_f} = 28.03 kg \cdot m^2[/tex]

Thus

      [tex]I_f = 130.09 + 28.03[/tex]

      [tex]I_f = 158.12 \ kg \ m^2[/tex]

Thus

     [tex]L_f = 158.12 * w_f[/tex]

Hence

      [tex]712.5 = 158.12 * w_f[/tex]

       [tex]w_f = 4.503 \ rad/s[/tex]