Respuesta :
Answer:
(a) 0.36
(b) 0.64
(c) 0.53
(d) 0.47
(e) 0.17
(f) 0.77
Step-by-step explanation:
(a)
Compute the value of P (A₁ ∪ A₂) as follows:
[tex]P(A_{1}\cup A_{2})=P(A_{1})+P(A_{2})-P(A_{1}\cap A_{2})[/tex]
[tex]=0.22+0.25-0.11\\=0.36[/tex]
Thus, the value of P (A₁ ∪ A₂) is 0.36.
(b)
Compute the value of P (A₁' ∩ A₂') as follows:
[tex]P(A'_{1}\cap A'_{2})=1-P(A_{1}\cup A_{2})[/tex]
[tex]=1-0.36\\=0.64[/tex]
Thus, the value of P (A₁' ∩ A₂') is 0.64.
(c)
Compute the value of P (A₁ ∪ A₂ ∪ A₃) as follows:
[tex]P(A_{1}\cup A_{2}\cup A_{3})=P(A_{1})+P(A_{2})+P(A_{3})-P(A_{1}\cap A_{2})-P(A_{2}\cap A_{3})-P(A_{1}\cap A_{3})+P(A_{1}\cap A_{2}\cap A_{3})[/tex]
[tex]=0.22+0.25+0.28-0.11-0.05-0.07+0.01\\=0.53[/tex]
Thus, the value of P (A₁ ∪ A₂ ∪ A₃) is 0.53.
(d)
Compute the value of P (A₁' ∩ A₂' ∩ A'₃) as follows:
[tex]P(A'_{1}\cap A'_{2}\cap A'_{3})=1-P(A_{1}\cup A_{2}\cup A_{3})[/tex]
[tex]=1-0.53\\=0.47[/tex]
Thus, the value of P (A₁' ∩ A₂' ∩ A'₃) is 0.47.
(e)
Compute the value of P (A₁' ∩ A₂' ∩ A₃) as follows:
[tex]P(A'_{1}\cap A'_{2}\cap A_{3})=P(A_{3})-[P(A_{1}\cap A_{3})+P(A_{2}\cap A_{3})-P(A_{1}\cap A_{2}\cap A_{3})][/tex]
[tex]=0.28-(0.05+0.07-0.01)\\=0.28-0.11\\=0.17[/tex]
Thus, the value of P (A₁' ∩ A₂' ∩ A₃) is 0.17.
(f)
Compute the value of P ((A₁' ∩ A₂') ∪ A₃) as follows:
[tex]P((A'_{1}\cap A'_{2})\cup A_{3})=P(A'_{1}\cup A'_{2}\cup A'_{3})+P(A_{3})[/tex]
[tex]=0.49+0.28\\=0.77[/tex]
Thus, the value of P ((A₁' ∩ A₂') ∪ A₃) is 0.77.