Answer:
[tex]\frac{d\,arccos(x)}{dx} =-\frac{1}{\sqrt{1-x^2} }[/tex]
See the proof below
Step-by-step explanation:
if [tex]y=arccos(x)[/tex], then : [tex]cos(y)=cos(arccos(x))=x[/tex]
We can then apply the derivative to both sides of this last equation and remember to use the chain rule as we encounter the variable "y":
[tex]cos(y)=x\\\frac{d}{dx} cos(y)=\frac{d}{dx} x\\-sin(y)\,\frac{dy}{dx} =1\\\frac{dy}{dx} =-\frac{1}{sin(y)} \\\frac{dy}{dx} =-\frac{1}{\sqrt{1-cos^2(y)} }\\\frac{dy}{dx} =-\frac{1}{\sqrt{1-x^2} }\\\frac{d\,arccos(x)}{dx} =-\frac{1}{\sqrt{1-x^2} }[/tex]