A 2.75-kN tensile load is applied to a test coupon made from 1.6-mm flat steel plate (E = 200 GPa, ν = 0.30). Determine the resulting change in (a) the 50-mm gage length, (b) the width of portion AB of the test coupon, (c) the thickness of portion AB, (d) the cross- sectional area of portion AB.

Respuesta :

Answer:

I have attached the diagram for this question below. Consult it for better understanding.

Find the cross sectional area AB:

A = (1.6mm)(12mm) = 19.2 mm² = 19.2 × 10⁻⁶m

Forces is given by:

F = 2.75 × 10³ N

Horizontal Stress can be found by:

σ (x) = F/A

σ (x) = 2.75 × 10³ / 19.2 × 10⁻⁶m

σ (x) = 143.23 × 10⁶ Pa

Horizontal Strain can be found by:

ε (x) = σ (x)/ E

ε (x) = 143.23 × 10⁶ / 200 × 10⁹

ε (x) = 716.15 × 10⁻⁶

Find Vertical Strain:

ε (y) = -v · ε (y)

ε (y) = -(0.3)(716.15 × 10⁻⁶)

ε (y) = -214.84 × 10⁻⁶

PART (a)

For L = 0.05m

Change (x) = L · ε (x)

Change (x) = 35.808 × 10⁻⁶m

PART (b)

For W = 0.012m

Change (y) = W · ε (y)

Change (y) = -2.5781 × 10⁻⁶m

PART(c)

For t= 0.0016m

Change (z) = t · ε (z)

where

ε (z) = ε (y) ,so

Change (z) = t · ε (y)

Change (z) = -343.74 × 10⁻⁹m

PART (d)

A = A(final) - A(initial)

A = -8.25 × 10⁻⁹m²

(Consult second picture given below for understanding how to calculate area)

Ver imagen AmeerAbdullah
Ver imagen AmeerAbdullah

The resulting change in the 50-mm gauge length; the width of portion AB of the test coupon; the thickness of portion AB; the cross- sectional area of portion AB are respectively; Δx = 35.808 × 10⁻⁶ m; Δy = -2.5781 × 10⁻⁶m; Δ_z = -343.74 × 10⁻⁹m; A = -8.25 × 10⁻⁹m²

What is the stress and strain in the plate?

Let us first find the cross sectional area of AB from the image attached;

A = (1.6mm)(12mm) = 19.2 mm² = 19.2 × 10⁻⁶m

We are given;

Tensile Load; F = 2.75 kN = 2.75 × 10³ N

Horizontal Stress is calculated from the formula;

σₓ = F/A

σₓ = (2.75 × 10³)/(19.2 × 10⁻⁶)m

σₓ = 143.23 × 10⁶ Pa

Horizontal Strain is calculated from;

εₓ = σₓ/E

We are given E = 200 GPa = 200 × 10⁹ Pa

Thus;

εₓ = (143.23 × 10⁶)/(200 × 10⁹)

εₓ = 716.15 × 10⁻⁶

Formula for Vertical Strain is;

ε_y = -ν * εₓ

We are given ν = 0.30. Thus;

ε_y  = -(0.3) * (716.15 × 10⁻⁶)

ε_y  = -214.84 × 10⁻⁶

A) We are given;

Gauge Length; L = 0.05m

Change in gauge length is gotten from;

Δx = L * εₓ

Δx = 0.05 × 716.15 × 10⁻⁶

Δx = 35.808 × 10⁻⁶ m

B) From the attached diagram, the width is;

W = 0.012m

Change in width is;

Δy = W * ε_y

Δy = 0.012 * -214.84 × 10⁻⁶

Δy = -2.5781 × 10⁻⁶m

C) We are given;

Thickness of plate; t = 1.6 mm = 0.0016m

Change in thickness;

Δ_z = t * ε_z

where;

ε_z = ε_y

Thus;

Δ_z = t * ε_y

Δ_z = 0.0016 * -214.84 × 10⁻⁶

Δ_z = -343.74 × 10⁻⁹m

D) The change in cross sectional area is gotten from;

ΔA = A_final - A_initial

From calculating the areas, we have;

A = -8.25 × 10⁻⁹ m²

Read more about stress and strain in steel plates at; https://brainly.com/question/1591712

Ver imagen AFOKE88