Answer:
(a) The test statistic would follow a t distribution with n - 1 = 10 - 1 = 9 degrees of freedom.
(b) The test statistic is -2.2361.
(c) The p-value of the test is 0.026.
(d) α = 0.05.
Step-by-step explanation:
In this case a hypothesis test is to be performed to determine whether the mean difference in the husband's versus the wife's satisfaction level is negative.
(a)
The data provided is paired data.
So a paired t-test would be used.
The test statistic would follow a t distribution with n - 1 = 10 - 1 = 9 degrees of freedom.
The hypothesis can be defined as follows:
[tex]\text{H}_{0}:\ \mu_{d}=0\\\\\text{H}_{a}:\ \mu_{d}<0[/tex]
(b)
Compute the test statistic as follows:
[tex]t=\frac {\bar d-\mu_{d}}{\sigma_{d}/\sqrt{n}}[/tex]
[tex]=\frac{-0.50-0}{0.7071/\sqrt{10}}\\\\=-2.2360894\\\\\approx -2.2361[/tex]
The test statistic is -2.2361.
(c)
Compute the p-value as follows:
[tex]p-value=P(t_{n-1}<t)\\\\=P(t_{9}<-2.2361)\\\\=0.026[/tex]
The p-value of the test is 0.026.
(d)
It is provided that the significance level of the test is, α = 0.05.